Электрическая сварочная дуга

Основные понятия

Электрическая сварочная дуга представляет собой устойчивый дли­тельный электрический разряд в газовой среде между твердыми или жид­кими электродами при высокой плот­ности тока, сопровождающийся выделением большого количества теплоты. Электрический разряд в газе есть электрический ток, проходящий через газовую среду благодаря наличию в ней свободных электронов, а также отрицательных и положительных ио­нов, способных перемещаться между электродами под действием приложенного электрического поля (разности потенциалов между электродами).

Электрон — это частица весьма малой массы, несущая элементарный ( наименьший, неделимый) электричес­кий заряд отрицательного знака. Мас­са электрона равна 9,1 • 10-28г; эле­ментарный электрический заряд равен 1,6 • 10-19 Кл. Ионом называется атом или молекула вещества, имею­щая один или несколько элементарных зарядов. Положительные ионы имеют избыточный положительный заряд; они образуются при потере нейтраль­ным атомом или молекулой одного или нескольких электронов из своей на­ружной (валентной) оболочки (электроны, вращающиеся в валентной оболочке атома, связаны слабее, чем электроны внутренних оболочек, и по­этому легко отрываются от атома при столкновениях или под действием обл­учения). Отрицательные ионы имеют избыточный отрицательный заряд; они образуются, если атом или молекула присоединяет к своей валентной оболочке лишние электроны.

  • Процесс, при котором из нейтральных атомов и молекул образуются положительные и отрицательные ионы, назы­вается ионизацией. Ионизация, вызван­ная в некотором объеме газовой среды, называется объемной ионизацией. Объемная ионизация, полученная благодаря нагреванию газа до очень высо­ких температур, называется терми­ческой ионизацией.

При высоких температурах значительная часть молекул газа обладает достаточной энергией для того, чтобы при столкновениях могло произойти разбиение нейтральных молекул на ионы; кроме того, с повышением температуры увеличивается общее число столкновений между молекулами газа. При очень высоких температурах на процесс ионизации начинает влиять также и излучение газа и раскаленных электронов. При обычных температурах ионизацию можно вызвать, если уже имеющимся в газе электронам и ионам сообщить с помощью электрического поля большие скорости. Обладая большой энергией, эти частицы могут разбивать нейтральные атомы и молекулы на ионы. Кроме того, ионизацию можно вызвать световыми, ультрафиолетовы­ми, рентгеновскими лучами, а также излучением радиоактивных веществ.

В обычных условиях воздух, как и все газы, обладает весьма слабой электропроводностью. Это объясняется малой концентрацией свободных электронов и ионов. Поэтому, для того чтобы вызвать в воздухе или в газе мощный электрический ток, т. е. элект­рическую дугу, необходимо ионизиро­вать воздушный промежуток (или дру­гую газообразную среду) между электродами. Ионизацию можно произвести, если приложить к электр­дам достаточно высокое напряжение; тогда имеющиеся в газе (в малом количестве) свободные электроны и ионы будут разгоняться электричес­ким полем и, получив большие энер­гии, смогут разбить нейтральные ато­мы и молекулы на ионы.

При сварке из соображений тех­ники безопасности нельзя пользовать­ся высокими напряжениями. Поэтому используют явления термоэлектронной и автоэлектронной эмиссий. При этом имеющиеся в металле в большом коли­честве свободные электроны, обладая достаточной кинетической энергией, переходят в газовую среду межэлектродного пространства и способствуют ее ионизации.

При термоэлектронной эмиссии благодаря высокой температуре сво­бодные электроны «испаряются» с поверхности металла. Чем выше тем­пература, тем большее число свобод­ных электронов приобретает энергию, достаточную для преодоления потен­циального барьера в поверхностном слое и выхода из металла. При авто­электронной (холодной) эмиссии со­здается внешнее электрическое поле, которое изменяет потенциональный барьер у поверхности металла и облег­чает выход тех электронов, которые имеют достаточную энергию для преодоления этого барьера.

  • Ионизация газовой среды характеризу­ется степенью ионизации, т. е. отноше­нием числа заряженных частиц в дан­ном объеме к первоначальному числу частиц (до начала ионизации).
График степени ионизации

Степень ионизации

 При полной ионизации степень ионизации равна единице. На рисунке выше представлен график зависимости сте­пени ионизации от температуры нагре­ва некоторых веществ. Из графика видно, что при температуре 6000…8000 К такие вещества, как ка­лий, натрий, кальций, обладают доста­точно высокой степенью ионизации. Пары этих элементов, находясь в дуго­вом промежутке, обеспечивают лег­кость возбуждения и устойчивое горе­ние дуги. Это свойство щелочных ме­таллов объясняется тем, что атомы этих металлов обладают малым потен­циалом ионизации.

  • Потенциалом ионизации называется от­ношение работы выхода электрона из атома вещества к заряду этого элект­рона:

V = W / е,

где V—потенциал ионизации, В; W — работа выхода электрона, Дж; е — заряд электрона, Кл.

Сложные атомы, содержащие в своем составе много электронов, име­ют несколько потенциалов ионизации. Первый потенциал ионизации соответ­ствует выходу электрона, находяще­гося в наружной оболочке атома и слабее других связанного с ним. Вы­ход следующих электронов, располо­женных ближе к ядру и сильнее связанных с ним, требует большей работы. Поэтому вторые и последую­щие потенциалы ионизации, соответствующие выходам второго и последу­ющих электронов, будут больше. Пер­вые потенциалы VI ионизации некото­рых элементов:

 

Элементы K Na Ba Li Al Ca Cr Mn C H O N
VI 4,32 5,12 5,19 5,37 5,96 6,08 6,74 7,40 11,22 13,53 13,56 14,50

 

Как видно, наименьшим потенциа­лом ионизации обладают калий, нат­рий, барий, литий, алюминий, кальций и др. Поэтому для повышения устой­чивости горения электрической дуги эти вещества вводят в зону дуги в виде электродных покрытий или флюсов.

Таким образом, электропровод­ность воздушного промежутка между электродами, а отсюда и устойчивое горение дуги обеспечивается эмиссией катода и объемной ионизацией газов в зоне дуги, благодаря которым в дуге перемещаются мощные потоки заря­женных частиц.

Электрическая дуга постоянного тока возбуждается при соприкоснове­нии торца электрода и кромок свариваемых деталей. Контакт в на­чальный момент возникает между мик­ровыступами поверхностей электрода и свариваемой детали (рис. 1,а). Высокая плотность тока способствует мгновенному расплавлению этих вы­ступов и образованию пленки жид­кого металла (рис. 1, б), которая замыкает электрическую цепь на

Электрическая дуга

Рис.1

участке «электрод — свариваемая де­таль». При последующем отводе элект­рода от поверхности детали на 2…4 мм (рис. 1, в) пленка жидкого металла растягивается, а сечение ее уменьша­ется, вследствие чего возрастает плот­ность тока и повышается температура металла. Эти явления приводят к раз­рыву пленки и испарению вскипевшего металла. При этом интенсивные термо- и автоэлектронная эмиссии обеспечи­вают ионизацию паров металла и га­зов межэлектродного промежутка. В образовавшейся ионизированной среде возникает электрическая сварочная дyгa (рис. 1, г). Процесс возбуж­дения дуги кратковременен и осуще­ствляется сварщиком в течение долей секунды.

В установившейся сварочной дуге (Рис. 7, г) различают три зоны: катодную 1, анодную 3 и столба дуги 2Катодная зона глубиной около 10-5 см, так называемое катодное пятно, расположена на торце катода (на рис. 1 электрод является катодом,а деталь—анодом). Отсюда вылетает поток свободных электронов, ионизирующих дуговой промежуток. Плот­ность тока на катодном пятне достигает 60…70 А/мм2. К катоду устремляются потоки положительных ионов, которые бомбардируют его и отдают свою энергию, нагревая его до температуры 2500…3000°С.

Анодная зона, называемая анодным пятном, расположена на торце анода. К анодному пятну устремляются и отдают свою энергию потоки электронов, накаляя его до температуры 2500…4000°С. Столб дуги, расположенный между катодной и анодной зонами, состоит из раскаленных и ионизированных частиц. Температура в этой зоне достигает 6000…7000° С в зависимости от плотности сварочного тока.

В начальный момент для возбуждения дуги необходимо несколько большее напряжение, чем при ее последующем горении. Это объясняется тем, что при возбуждении дуги воздушный за­зор недостаточно нагрет, степень иони­зации невысокая и необходимо напряжение, способное сообщить свободным электронам такую энергию, чтобы при их столкновении с атомами газового промежутка могла произойти иониза­ция. Увеличение концентрации свобод­ных электронов в объеме дуги приво­дит к интенсивной ионизации дугового промежутка, а отсюда к повышению его электропроводности. Вследствие этого напряжение падает до значения, необходимого для устойчивого горе­ния дуги.

  • Зависимость напряжения дуги от тока и сварочной цепи называют статической вольт-амперной характеристикой дуги.
Вольт-амперная характеристика дуги

Рис.2

Вольт-амперная характеристика дуги (рис. 2, а) имеет три области: падающую 1, жесткую 2 и возрастающую 3. В области 1 (до 100 А) с уве­личением тока напряжение значитель­но уменьшается. Это происходит в связи с тем, что при повышении тока увеличивается поперечное сечение, а следовательно, и проводимость столба дуги. В области 2 (100…1000 А) при увеличении тока напряжение сохра­няется постоянным, так как сечение столба дуги и площади анодного и катодного пятен увеличиваются пропорционально току. Область характе­ризуется постоянством плотности тока. В области 3 напряжение возрастает вследствие того, что уве­личение плотности тока выше оп­ределенного значения не сопровождается увеличением катодного пятна ввиду ограниченности сечения элект­рода. Дуга области 1 горит неустой­чиво и поэтому имеет ограниченное применение. Дуга области 2 горит ус­тойчиво и обеспечивает нормальный процесс сварки.

Вольт-амперная характеристика дуги при ручной дуговой сварке низкоуглеродистой стали (рис. 2, б) представлена в виде кривых а (длина дуги 2 мм) и б (длина дуги 4 мм). Кривые в (длина дуги 2 мм) и г (длина дуги 4 мм) относятся к автоматической сварке под флюсом при высоких плотностях тока.

Напряжение, необходимое для воз­буждения дуги, зависит: от рода тока (постоянный или переменный), длины дугового промежутка, материала электрода и свариваемых кромок, по­крытия электродов и ряда других факторов. Значения напряжений, обе­спечивающих возникновение дуги в дуговых промежутках, равных 2…4 мм, находятся в пределах 40…70 В. На­пряжение (В) для установившейся сварочной дуги может быть определе­но по формуле

U д = a + b lд

где а — коэффициент, по своей физи­ческой сущности представляющий сумму падений напряжений в катодной и анодной зонах, В; b — коэффициент, выражающий среднее падение напря­жения на единицу длины дуги, В/мм; lд — длина дуги, мм.

  • Длиной дуги называется расстояние между торцом электрода и поверх­ностью сварочной ванны. «Короткой» называют дугу длиной 2…4 мм. Длина «нормальной» дуги — 4…6 мм. Дугу длиной более 6 мм называют «длинной».

Оптимальный режим сварки обе­спечивается при короткой дуге. При длинной дуге процесс протекает неравномерно, дуга горит неустойчиво, ме­талл, проходя через дуговой промежу­ток, больше окисляется и азотирует­ся, увеличиваются угар и разбрызги­вание металла.

Электрическая сварочная дуга мо­жет отклоняться от своего нормально­го положения при действии магнитных полей, неравномерно и несим­метрично расположенных вокруг дуги и в свариваемой детали. Эти поля действуют на движущиеся заряжен­ные частицы и тем самым оказывают воздействие на всю дугу. Такое явле­ние называется магнитным дутьем. Воздействие магнитных полей на дугу прямо пропорционально квадрату си­лы тока и становится заметным при сварочных токах более 300 А.

Подвод тока и наклон электрода

Рис.3

На отклонение дуги влияют места подвода тока к свариваемой детали (рис. 3, а, б, в) и наклон электрода (рис. 3, г). Наличие вблизи свароч­ной дуги значительных ферромагнитных масс также нарушает симметричность магнитного поля дуги и вызывает отклонение дуги в сторону эти масс.

Магнитное дутье в некоторых случаях затрудняет процесс сварки, и поэтому принимаются меры по снижению его действия на дугу. К таким мерам относятся: сварка короткой дугой, подвод сварочного тока в точке, максимально близкой к дуге, наклон электрода в сторону действия магнитного дутья, размещение у места сварки ферромагнитных масс.

При использовании переменного тока анодное и катодное пятна меняются местами с частотой, равной частоте тока. С течением времени напряжение Uд и ток I периодически изменяются от нулевого значения до наибольшего, как показано на рис. 4 (Ux•x — напряжение зажигания дуги).

Изменение напряжения дуги и тока

Рис.4

При переходе значения тока через нуль и перемене полярности в начале и в конце каждого полупериода дуга гаснет, температура активных пятен и дугового промежутка снижается. Вследствие этого происходит деионизация газов и уменьшение электропро­водности столба дуги. Интенсивнее падает температура активного пятна, расположенного на поверхности сва­рочной ванны в связи с отводом теплоты в массу основного металла. Повторное зажигание дуги в начале малого полупериода возможно только при повышенном напряжении, называемом пиком зажигания. При этом установлено, что пик зажигания несколько выше, когда катодное пятно находится на основном металле. Для снижения пика зажигания, облегчения повторного зажигания дуги и повышения устойчивости ее горения применяют меры, снижающие эффективный по­тенциал ионизации газов в дуге. При этом электропроводность дуги после ее угасания сохраняется дольше, пик за­жигания снижается, дуга легче возбуждается и горит устойчивее.

К этим мерам относится применение различных стабилизирующих элементов (калий, натрий, кальций и др.), вводимых в зону дуги в виде электродных покрытий или в виде флюсов.

Важное значение имеет сдвиг фаз между напряжением и током: необходимo, чтобы при переходе тока через нулевое значение напряжение было достаточным для возбуждения дуги.

Тепловые свойства сварочной дуги

Питание постоянным током

Рис.5

Энергия мощных потоков заряженных частиц, бомбардирующих катод и анод, превращается в тепловую энергию электрической дуги. Суммарное количество теплоты Q (Дж), выделяемое дугой на катоде QK, аноде Qa и а столбе дуги Q0, определяется по фор­муле:

Q = I   Uд,

где I — сварочный ток, A; Uд — на­пряжение дуги, В; t — время горения дуги, с.

При питании дуги постоянным то­ком (рис. 11) наибольшее количество теплоты выделяется в зоне анода. Это объясняется тем, что анод под­вергается более мощной бомбардиров­ке заряженными частицами, чем ка­тод, а при столкновении частиц в стол­бе дуги выделяется меньшая доля общего количества теплоты.

При сварке угольным электродом температура в катодной зоне дости­гает 3200° С, в анодной — 3900°С, а в столбе дуги среднее значение температуры составляет 6000° С. При сварке металлическим электродом температура катодной зоны состав­ляет около 2400° С, а анодной зоны — 2600° С.

Разная температура катодной и анодной зон и разное количество теп­лоты, выделяющейся в этих зонах, используются при решении технологи­ческих задач. При сварке деталей, требующих большого подвода теплоты для прогрева кромок, применяют прямую полярность, при которой анод (плюсовая клемма источника тока) подсоединяют к детали, а катод (ми­нусовая клемма источника тока) — к электроду. При сварке тонкостен­ных изделий,тонколистовых конструк­ций, а также сталей, не допускающих перегрева (нержавеющие, жаропроч­ные, высокоуглеродистые и др.), при­меняют сварку постоянным током об­ратной полярности. В этом случае катод подсоединяют к свариваемой детали, а анод — к электроду. При этом не только обеспечивается меньший нагрев свариваемой детали, но и уско­ряется процесс расплавления электродного материала за счет более вы­сокой температуры анодной зоны и большего подвода теплоты. Поляр­ность клемм источника постоянного тока определяют с помощью раствора поваренной соли (половина чайной ложки соли на стакан воды). Если в такой раствор опустить провода от клемм источника тока, то у отрица­тельного провода будет происходить бурное выделение пузырьков во­дорода.

При питании дуги переменным то­ком различие температур катодной и анодной зон и распределение теплоты сглаживаются вследствие периодичес­кой смены катодного и анодного пятна с частотой, равной частоте тока.

Практика показывает, что в сред­нем при ручной сварке только 60…70% теплоты дуги используется на нагре­вание и плавление металла. Осталь­ная часть теплоты рассеивается в ок­ружающую среду через излучение и конвекцию.

Количество теплоты, используемое на нагрев и плавку свариваемого ме­талла в единицу времени, называется эффективной тепловой мощностью дуги Qэ (Дж). Она равна полной тепловой мощности дуги, умноженной на эффективный коэффициент полез­ного действия η нагрева металла дугой:

Qэ = I  Uдη.

Величина η зависит от способа сварки, материала электрода, состава электродного покрытия и других факторов. При ручной дуговой сварке электродом с тонким покрытием или угольным электродом η составляет 0,5…0,6, а при качественных электро­дах — 0,7…0,85. При аргонодуговой сварке потери теплоты значительны (η = 0,5…0,6). Наиболее полно ис­пользуется теплота при сварке под флюсом (η = 0,85…0,93).

Для характеристики теплового ре­жима процесса сварки принято оп­ределять погонную энергию дуги, т. е. количество теплоты, вводимое в ме­талл на единицу длины однопроход­ного шва, измеряемое в Дж/м. Погонная энергия Qп равна отношению эффективной тепловой мощности Qэ к скорости сварки v:

Qп = Qэ/v = I   Uдη/v.

Потери теплоты при ручной дуго­вой сварке составляют примерно 25%, из которых 20% уходят в окружающую среду через излучение и кон­векцию паров и газов, а 5% — на угар и разбрызгивание свариваемого металла. При автоматической сварке под флюсом потери составляют только 17%, из которых 16% расходуются на плавление флюса и 1 % на угар и разбрызгивание..

Плавление и перенос металла в дуге

Металл плавящегося электрода пе­реходит (в виде капель различного размера) в сварочную ванну. Схема­тично перенос металла электрода мож­но представить в следующем виде. В начальный момент металл на конце электрода подплавляется и образует­ся слой расплавленного металла (рис. 6, а). Затем под действием сил поверхностного натяжения и силы тя­жести этот слой металла принимает форму капли (рис. 6, б) с образованием у основания тонкой шейки, которая с течением времени уменьшается. Это приводит к значительному увеличению плотности тока в шейке капли. Удлинение шейки продолжается до момента касания капли поверхности сварочной ванны (рис. 6, в). В этот момент происходит короткое замыкание сварочной цепи. Резкое возрастание тока приводит к разрыву шейки и в следующее мгновение вновь возникает дуга (рис. 6, г), но уже между торцом электрода и каплей. Под давлением паров и газов зоны дуги капля с ускорением внедряется в жидкий металл сварочной ванны. При этом часть металла разбрызгивается. Затем процесс каплеобразования повторяется.

Плавление и перенос металла в дуге

Рис. 6

Установлено, что время горения дуги короткого замыкания составля­ет примерно 0,02…0,05 с. Частота и  продолжительность короткого замыкания в значительной степени зависит от длины сварочной дуги. Чем меньше длина дуги, тем больше коротких замыканий и тем они продолжительнее.

Форма и размеры капель металла определяется силой тяжести и силами поверхностного натяжения. При сварке в нижнем положении сила тяжести способствует отрыву капли, а при потолочной сварке препятствует перено­су металла электрода в шов. На раз­меры капель большое влияние оказывают состав и толщина электродного покрытия, а также сварочный ток. Электродное покрытие, как правило, снижает поверхностное натяжение металла почти на 25…30%. Кроме того, газообразующие компоненты покрытия выделяют большое количество газов и создают в зоне дуги повышен­ное давление, которое способствует размельчению капель жидкого металла. При повышении сварочного тока размер капель уменьшается. Перенос электродного металла крупными каплями имеет место при сварке на малых токах электродами с тонким покрытием. При больших плотностях сварочного тока и при использовании электродов с толстым покрытием перенос металла осуществляется в виде потока маленьких капель (струйный перенос металла).

Плавление электрода с толстым покрытием

Рис. 7

На скорость переноса капель металла в дуге действует газовое дутье, представляющее собой поток газов, направленный вдоль дуги в сторону сварочной ванны. При сварке электродом с толстым покрытием стер­жень 1 электрода (рис. 7) плавится быстрее и торец его оказывается несколько прикрытым «чехольчиком» 3 покрытия 2. Интенсивное газообразо­вание в небольшом объеме «чехоль­чика» приводит к явлению газового дутья, ускоряющего переход капель металла в сварочную ванну.

Основным фактором, влияющим на скорость переноса металла в дуге, является электромагнитное поле. Магнитное поле оказывает сжи­мающее действие и ускоряет образо­вание и сужение шейки капли, а сле­довательно, и отрыв ее от торца элек­трода. Электрическое поле, напряжен­ность которого направлена вдоль дуги в сторону сварочной ванны, также ускоряет процесс отрыва капель. При потолочной сварке перенос капель электродного металла в сварной шов обеспечивается в основном действием магнитного и электрического полей, а также явлением газового дутья в дуге.

Капли металла, проходящие черёз дугу, имеют шлаковую оболочку, кото­рая образуется от плавления веществ, входящих в покрытие электрода. Эта оболочка защищает металл капли от окисления и азотирования, обеспе­чивая хорошее качество металла шва.

Доля электродного металла в сос­таве металла шва различна и зависит от способа и режима сварки, а также от вида сварного шва. При ручной сварке доля электродного металла ко­леблется в широких пределах (30…80%), а при автоматической сварке она составляет 30…40%.

Производительность сварки в зна­чительной степени зависит от скорости расплавления электродного металла, которая оценивается коэффициентом расплавления αρ.

  • Коэффициент расплавления численно равен массе электродного металла в граммах, расплавленной в течение од­ного часа, отнесенной к одному амперу сварочного тока.

Коэффициент расплавления зави­сит от ряда факторов. При обратной полярности коэффициент расплавления больше, чем при прямой поляр­ности, так как температура анода вы­ше, чем катода. Состав покрытия электрода и его толщина также влия­ют на коэффициент расплавления. Это объясняется, вопервых, значением эффективного потенциала ионизации газов, а во-вторых, изменением тепло­вого баланса дугового промежутка. Коэффициент расплавления при руч­ной дуговой сварке составляет 6,5… 14,5 г/(А • ч). Меньшие значения имеют электроды с тонким покрытием, а большие — электроды с толстым покрытием.

  • Для оценки скорости сварки пользуются коэффициентом наплавки αн. Этот коэффициент оценивает массу электродного металла, введенного в сварной шов.

Коэффициент наплавки меньше коэффициента расплавления на вели­чину потерь электродного металла из-за угара и разбрызгивания. Эти потери при ручной сварке достигают 25…30%, а при автоматической сварке под флю­сом составляют только 2…5% от коли­чества расплавленного электродного металла. Знание этих коэффициентов позволяет произвести расчет потреб­ного количества электродного металла для сварки шва установленного сече­ния и определить скорость сварки шва.

Количество металла (кг), необхо­димое для получения сварного шва, gн = LFρ, где L — длина свариваемо­го шва, м; F — площадь поперечного сечения шва, м2; ρ — плотность элек­тродного металла, кг / м3.

Выражая это же количество ме­талла (кг) через коэффициент наплав­ки, получим gн = 10-3 анIt, где ан — коэффициент наплавки, г/(А • ч); I — сварочный ток, A; t — время горения дуги, ч. Отсюда: время горения ду­ги (ч) t = 10-3 gн/(αнI); скорость сварки (м/ч) v = L/t.

Зная gн, можно определить необхо­димое количество электродного ме­талла:   gэ=gн(1+Ψ), где Ψ — коэффициент потерь металла на угар и разбрызгивание.

Кроме того, потребное количество электродного металла (кг) можно оп­ределить, зная коэффициент расплавления αρ:gэ=10-3αρIt.

Задавшись диаметром и длиной электрода, по gэ вычисляют потреб­ное количество электродов. Диаметр стержня электрода должен соответст­вовать значению сварочного тока, дли­на стандартизована.

Поделись статьёй с друзьями! Пусть и другие узнают о нас!

1 комментарий

  1. Анатолий:

    Видел как водители приваривали обломавшееся ухо акамуляторной батареи. Присоединили проволкой стержень от батареи к одной клеме а касаясь другой клемы возбуждали дугу и тем самым приваривали отвалившееся ухо от клемы.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *